Abstract

Interventional Radiology procedures (e.g., angioplasty, embolization, stent graft placement) provide minimally invasive therapy to treat a wide range of conditions. These procedures involve the use of flexible tipped guidewires to advance diagnostic or therapeutic catheters into a patient's vascular or visceral anatomy. This paper presents a real-time physically based hybrid modeling approach to simulating guidewire insertions. The long, slender body of the guidewire shaft is simulated using nonlinear elastic Cosserat rods, and the shorter flexible tip composed of a straight, curved, or angled design is modeled using a more efficient generalized bending model. Therefore, the proposed approach efficiently computes intrinsic dynamic behaviors of guidewire interactions within vascular structures. The efficacy of the proposed method is demonstrated using detailed numerical simulations inside 3-D blood vessel structures derived from preprocedural volumetric data. A validation study compares positions of four physical guidewires deployed within a vascular phantom, with the co-ordinates of the corresponding simulated guidewires within a virtual model of the phantom. An optimization algorithm is also implemented to further improve the accuracy of the simulation. The presented simulation model is suitable for interactive virtual reality-based training and for treatment planning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call