Abstract

High power conversion efficiency and long-term stability are significant targets for practical applications of dye-sensitized solar cells. Here, we present a quasi-solid-state dye-sensitized solar cell that incorporates a low molecular weight organic gelator-based electrolyte in conjunction with a high-absorptivity ruthenium sensitizer C105, exhibiting an impressive power conversion efficiency of 9.1%. By means of transient absorption and electrical impedance measurements, we scrutinize the impacts of the additive low molecular weight organic gelator in a low-volatility 3-methoxypropionitrile electrolyte on the photovoltaic characteristics of dye-sensitized solar cells with a sensitizer C105. The quasi-solid-state dye-sensitized solar cell also retains excellent thermal and light-soaking stability during 1000-h accelerated aging tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.