Abstract

Stable and accurate interface conditions based on the SAT penalty method are derived for the linear advection–diffusion equation. The conditions are functionally independent of the spatial order of accuracy and rely only on the form of the discrete operator. We focus on high-order finite-difference operators that satisfy the summation-by-parts (SBP) property. We prove that stability is a natural consequence of the SBP operators used in conjunction with the new, penalty type, boundary conditions. In addition, we show that the interface treatments are conservative. The issue of the order of accuracy of the interface boundary conditions is clarified. New finite-difference operators of spatial accuracy up to sixth order are constructed which satisfy the SBP property. These finite-difference operators are shown to admit design accuracy (pth-order global accuracy) when (p−1)th-order stencil closures are used near the boundaries, if the physical boundary conditions and interface conditions are implemented to at leastpth-order accuracy. Stability and accuracy are demonstrated on the nonlinear Burgers' equation for a 12-subdomain problem with randomly distributed interfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.