Abstract
Markerless Augmented Reality (AR) registration using the standard Homography matrix is unstable, and for image-based registration it has very low accuracy. In this paper, we present a new method to improve the stability and the accuracy of marker-less registration in AR. Based on the Visual Simultaneous Localization and Mapping (V-SLAM) framework, our method adds a three-dimensional dense cloud processing step to the state-of-the-art ORB-SLAM in order to deal with mainly the point cloud fusion and the object recognition. Our algorithm for the object recognition process acts as a stabilizer to improve the registration accuracy during the model to the scene transformation process. This has been achieved by integrating the Hough voting algorithm with the Iterative Closest Points(ICP) method. Our proposed AR framework also further increases the registration accuracy with the use of integrated camera poses on the registration of virtual objects. Our experiments show that the proposed method not only accelerates the speed of camera tracking with a standard SLAM system, but also effectively identifies objects and improves the stability of markerless augmented reality applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.