Abstract
In this paper, we are motivated by two important applications: entropy-regularized optimal transport problem and road or IP traffic demand matrix estimation by entropy model. Both of them include solving a special type of optimization problem with linear equality constraints and objective given as a sum of an entropy regularizer and a linear function. It is known that the state-of-the-art solvers for this problem, which are based on Sinkhorn’s method (also known as RSA or balancing method), can fail to work, when the entropy-regularization parameter is small. We consider the above optimization problem as a particular instance of a general strongly convex optimization problem with linear constraints. We propose a new algorithm to solve this general class of problems. Our approach is based on the transition to the dual problem. First, we introduce a new accelerated gradient method with adaptive choice of gradient’s Lipschitz constant. Then, we apply this method to the dual problem and show, how to reconstruct an approximate solution to the primal problem with provable convergence rate. We prove the rate \(O(1/k^2)\), k being the iteration counter, both for the absolute value of the primal objective residual and constraints infeasibility. Our method has similar to Sinkhorn’s method complexity of each iteration, but is faster and more stable numerically, when the regularization parameter is small. We illustrate the advantage of our method by numerical experiments for the two mentioned applications. We show that there exists a threshold, such that, when the regularization parameter is smaller than this threshold, our method outperforms the Sinkhorn’s method in terms of computation time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.