Abstract

This paper employs one-point, linear eddy viscosity and differential second-moment (DSM) turbulence closures to predict the turbulent characteristics of both rectilinear and circular tidal flows. The numerical scheme is based on a finite volume approach applied to a non-staggered grid such that all flow variables are stored at one and the same set of nodes. Numerical stability is maintained through the implementation of apparent viscosities and source term linearization, which are essential if eddy viscosity terms are absent. A stable algorithm is devised for the Reynolds stresses which includes a non-linear velocity smoothing in order to stabilise the numerical scheme during flow reversal and relaminarization. Favourable agreement with the experimental rectilinear tidal data of Schröder (Tech. Rep. GK55 87/E/16, GKSS-Forshungszentrum Geesthacht, 1983) and McClean (Turbulence and Sediment Transport Measurements in a North Sea Tidal Inlet (the Jade), Springer, New York, 1987, p. 436) is reported. Numerical calculations of circular tidal flows are also presented which were motivated by the preliminary investigations of Davies and Jones (Int. j. numer. meth. fluids,12, 17 (1991)) and Davies (Continental Shelf. Res., 11, 1313 (1991)), who employed the one-equation, k–l, eddy viscosity turbulence model to simulate rectilinear and circular tidal flows. © 1998 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.