Abstract
A stabilizing/penalty term is often used in finite element methods with discontinuous approximations to enforce connection of discontinuous functions across element boundaries. Removing stabilizers from discontinuous Galerkin finite element methods will simplify formulations and reduce programming complexity significantly. The goal of this paper is to introduce a stabilizer free weak Galerkin (WG) finite element method for second order elliptic equations on polytopal meshes. This new WG method keeps a simple symmetric positive definite form and can work on polygonal/polyhedral meshes. Optimal order error estimates are established for the corresponding WG approximations in both a discrete H1 norm and the L2 norm. Numerical results are presented verifying the theorem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.