Abstract

The reaction-diffusion model can generate a wide variety of spatial patterns, which has been widely applied in chemistry, biology, and physics, even used to explain self-regulated pattern formation in the developing animal embryo. In this work, a second-order stabilized semi-implicit time-stepping Fourier spectral method for the reaction-diffusion systems of equations with space described by the fractional Laplacian is developed. We adopt the temporal-spatial error splitting argument to illustrate that the proposed method is stable without imposing the CFL condition, and an optimal L2-error estimate in space is proved. We also analyze the linear stability of the stabilized semi-implicit method and obtain a practical criterion to choose the time step size to guarantee the stability of the semi-implicit method. Our approach is illustrated by solving several problems of practical interest, including the fractional Allen-Cahn, Gray-Scott and FitzHugh-Nagumo models, together with an analysis of the properties of these systems in terms of the fractional power of the underlying Laplacian operator, which are quite different from the patterns of the corresponding integer-order model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.