Abstract
A novel energy-stable scheme is proposed to solve the spatial fractional Cahn–Hilliard equations, using the idea of scalar auxiliary variable (SAV) approach and stabilization technique. Thanks to the stabilization technique, it is shown that larger temporal stepsizes can be applied in numerical simulations. Moreover, the proposed SAV finite difference scheme is non-coupled and linearly implicit, which can be efficiently solved by the preconditioned conjugate gradient (PCG) method with a sine transform based preconditioner. Optimal error estimates of the fully-discrete scheme are obtained rigorously. Numerical examples are given to confirm the theoretical results and show the higher efficiency of the proposed scheme than the previous SAV schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.