Abstract

In this paper, the second order accurate (in time) energy stable numerical schemes are presented for the Fractional Cahn-Hilliard (CH) equation. Combining the stabilized technique, we apply the implicit Crank-Nicolson formula (CN) to derive second order temporal accuracy, and we use the Fourier spectral method for space discrete to obtain the fully discretization schemes. It is shown that the schemes are unconditionally energy stable. A few numerical experiments are presented to conclude the article.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.