Abstract

AbstractFoam injection contributes to improved oil recovery through flow diversion, reduction of interfacial tension (IFT), and wettability alteration of the rock while its stability is an issue. In this article, nitrogen‐foam was optimally formulated using fluorocarbon tubiguard protect (FTP) surfactant stabilized with sodium dodecyl sulfate (SDS) co‐surfactant that was later experimentally considered for oil recovery in a fractured carbonate rock taken from an oil field in the Middle East. The results showed that the 5:1 volume ratio of fluorocarbon surfactant and SDS (FS51) generates a stable foaming agent with ability of changing the wettability of the carbonate rock surfaces to an intermediate gas‐wet state. A series of core‐flood experiments at HPHT conditions were also carried out and designed to properly represent matrix‐fracture media using both a horizontally and vertically oriented setup. The oil saturated cores were flooded with nitrogen gas first followed by foam injection. It was concluded that foam can divert the gas to flow from fractures to the matrix blocks and result in a significant oil recovery. The contact angle tests that performed after core‐flood experiments revealed the wettability changes of fracture surfaces from an oil‐wet to a gas‐wet state. This allows gas to be imbibed into the matrix blocks by capillary force and results in enhancement of ultimate oil recovery. This study revealed that trapped oil in matrixes blocks that had not been drained during the gas injection process could be produced by designing a stable foam that sustainably diverts injected fluid from fractures to matrix zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.