Abstract

AbstractA stabilized finite element method (FEM) is presented for solving the convection–diffusion equation. We enrich the linear finite element space with local functions chosen according to the guidelines of the residual‐free bubble (RFB) FEM. In our approach, the bubble part of the solution (the microscales) is approximated via an adequate choice of discontinuous bubbles allowing static condensation. This leads to a streamline‐diffusion FEM with an explicit formula for the stability parameter τK that incorporates the flow direction, has the capability to deal with problems where there is substantial variation of the Péclet number, and gives the same limit as the RFB method. The method produces the same a priori error estimates that are typically obtained with streamline‐upwind Petrov/Galerkin and RFB. © 2011 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2011

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.