Abstract

AbstractA new curved quadrilateral composite shell element using vectorial rotational variables is presented. An advanced co‐rotational framework defined by the two vectors generated by the four corner nodes is employed to extract pure element deformation from large displacement/rotation problems, and thus an element‐independent formulation is obtained. The present line of formulation differs from other co‐rotational formulations in that (i) all nodal variables are additive in an incremental solution procedure, (ii) the resulting element tangent stiffness is symmetric, and (iii) is updated using the total values of the nodal variables, making solving dynamic problems highly efficient. To overcome locking problems, uniformly reduced integration is used to compute the internal force vector and the element tangent stiffness matrix. A stabilized assumed strain procedure is employed to avoid spurious zero‐energy modes. Several examples involving composite plates and shells with large displacements and large rotations are presented to testify to the reliability, computational efficiency, and accuracy of the present formulation. Copyright © 2011 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.