Abstract

This paper continues the proposed idea of stability training for legged robots with any number of legs and any size on a motion platform and introduces the concept of a learning-based controller, the global self-stabilizer, to obtain a self-stabilization capability in robots. The overall structure of the global self-stabilizer is divided into three modules: action selection, adjustment calculation and joint motion mapping, with corresponding learning algorithms proposed for each module. Taking the human-sized biped robot, GoRoBoT-II, as an example, simulations and experiments in three kinds of motions were performed to validate the feasibility of the proposed idea. A well-designed training platform was used to perform composite random amplitude-limited disturbances, such as the sagittal and lateral tilt perturbations (±25°) and impact perturbations (0.47 times the robot gravity). The results show that the proposed global self-stabilizer converges after training and can dynamically combine actions according to the system state. Compared with the controllers used to generate the training data, the trained global self-stabilizer increases the success rate of stability verification simulations and experiments by more than 20% and 15%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call