Abstract

The effect of energy dissipation on the stability of motion of a mechanical system is a topic that has received considerable attention over the past 100 years. Since the advent of artificial Earth satellites, investigations concerned with spacecraft stability have led to renewed interest in this subject. Whereas previous work has dealt almost exclusively with damping forces that may be classified as generalized velocity damping forces; i.e., damping forces that satisfy the inequality ∑i=1nQiq˙i≦0 where the Qi’s are nonconservative generalized forces and the q˙i’s are generalized velocities, it has been found recently that a more general description of damping is sometimes desirable. Damping forces not satisfying the previously mentioned inequality have been called “constraint damping forces.” In the present paper, a theorem useful in the study of systems with constraint damping is stated and proved. This theorem represents a generalization of the Kelvin-Tait-Chetaev theorem for systems with generalized velocity damping only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.