Abstract

A novel, sensitive, stability-indicating gradient RP-LC method has been developed for quantitative analysis of balsalazide disodium and its related impurities both in the bulk drug and in pharmaceutical dosage forms. Efficient chromatographic separation was achieved on a C18 stationary phase with a simple mobile-phase gradient prepared from methanol and phosphate buffer (10 mm potassium dihydrogen orthophosphate monohydrate, adjusted to pH 2.5 by addition of orthophosphoric acid). The mobile-phase flow rate was 1.0 mL min−1. Quantification was achieved by use of ultraviolet detection at 240 nm. Under these conditions resolution of balsalazide disodium from its three potential impurities was greater than 2.0. Regression analysis resulted in a correlation coefficient greater than 0.99 for balsalazide disodium and all three impurities. This method was capable of detecting the three impurities at 0.003% of the test concentration of 0.3 mg mL−1, using an injection volume of 10 μL. Inter-day and intra-day precision for all three impurities and for balsalazide disodium was within 2.0% RSD. Recovery of balsalazide disodium from the bulk drug (99.2–101.5%) and from pharmaceutical dosage forms (99.8–101.3%), and recovery of the three impurities (99.1–102.1%) was consistently good. The test solution was found to be stable in 70:30 (v/v) methanol–water for 48 h. When the drug was subjected to hydrolytic, oxidative, photolytic, and thermal stress, acidic and alkaline hydrolysis and oxidizing conditions led to substantial degradation. The RP-LC method was validated for linearity, accuracy, precision, and robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.