Abstract

A mixed second order stabilised Petrov–Galerkin finite element framework was recently introduced by the authors (Lee et al., 2014) [46]. The new mixed formulation, written as a system of conservation laws for the linear momentum and the deformation gradient, performs extremely well in bending dominated scenarios (even when linear tetrahedral elements are used) yielding equal order of convergence for displacements and stresses. In this paper, this formulation is further enhanced for nearly and truly incompressible deformations with three key novelties. First, a new conservation law for the Jacobian of the deformation is added into the system providing extra flexibility to the scheme. Second, a variationally consistent Petrov–Galerkin stabilisation methodology is derived. Third, an adapted fractional step method is presented for both incompressible and nearly incompressible materials in the context of nonlinear elastodynamics. For completeness and ease of understanding, these three improvements are presented both in small and large strain regimes, studying the eigenstructure of the resulting systems. A series of numerical examples are presented in order to demonstrate the robustness of the enhanced methodology with respect to the work previously published by the authors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.