Abstract
BackgroundSex determining factor (SRY) located on the short arm of the Y chromosome, plays an important role in initiating male sex determination, resulting in development of testicular tissue. Presence of the SRY gene in females results in XY sex reversal and increased risk of gonadal germ cell tumours if the karyotype also includes the so-called GonadoBlastoma on the Y chromosome (GBY) region. The majority of mutations within the SRY gene are de novo affecting only a single individual in the family. The mutations within the high-mobility group (HMG) region have the potential to affect its DNA binding activity.Case PresentationWe performed G- and R-banding cytogenetic analysis of the patient and her family members including her father. We also performed molecular genetic analysis of SRY gene. Cytogenetic analysis in the patient (Turner Syndrome) revealed the mosaic karyotype as 45, X/46, XY (79%/21% respectively) while her father (milder features with testicular dysgenesis syndrome) has a normal male karyotype (46, XY). Using molecular approach, we screened the patient and her father for mutations in the SRY gene. Both patient and her father showed the same deletion of cytosine within HMG box resulting in frame shift mutation (L94fsX180), the father in a mosaic pattern. Histological examination of the gonads from the patient revealed the presence of gonadoblastoma formation, while the father presented with oligoasthenozoospermia and a testicular seminoma. The frameshift mutation at this codon is novel, and may result in a mutated SRY protein.ConclusionOur results suggest that lack of a second sex chromosome in majority cells of the patient may have triggered the short stature and primary infertility, and the mutated SRY protein may be associated with the development of gonadoblastoma. It is of importance to note that mosaic patients without a SRY mutation also have a risk for malignant germ cell tumors.
Highlights
Sex determining factor (SRY) located on the short arm of the Y chromosome, plays an important role in initiating male sex determination, resulting in development of testicular tissue
Our results suggest that lack of a second sex chromosome in majority cells of the patient may have triggered the short stature and primary infertility, and the mutated SRY protein may be associated with the development of gonadoblastoma
It is of importance to note that mosaic patients without a SRY mutation have a risk for malignant germ cell tumors
Summary
The present finding, especially the frameshift mutation in the highly conserved codon in the HMG box of SRY gene, further strengthen the functional importance of this gene in the sex development. To the best of our knowledge this is the first case (I-1) with the variant form of TDS phenotype having mosaic mutation in SRY gene. The frameshift mutation has been inherited by the daughter (II-5). It is concluded that TS patients must be analysed both by conventional cytogenetic and molecular genetics approaches to rule out the presence of the Y chromosome and/or the SRY gene, as well as the GBY region
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.