Abstract

HighlightsMeasurements of relaxation times in intact banana at micro-Tesla field was achieved.Bulk spin-spin relaxation time highly correlated with best descriptors of banana ripening.A basis for quasi-continuous distribution of spin-spin relaxation in banana was given.Abstract. Achieving fast, low-cost, and non-destructive internal quality testing techniques in the horticultural industry is a challenge. Developing techniques such as ultra-low field nuclear magnetic resonance (NMR) is a promising solution. Banana is a fast ripening fruit, which undergoes many changes in quality characteristics during ripening, and was chosen as a fit choice for extensive fruit quality study by NMR. A commercial NMR system using a superconducting quantum interference device (SQUID) as a sensor and operating at 100µT was used to measure changes that occurred in banana fruit during ripening. The longitudinal and transverse relaxation times (T1 and T2, respectively), were measured on fruit samples progressively drawn from a larger batch under storage. Physico-chemical attributes such as total soluble solids (TSS), titratable acidity (TA), pH, and color parameters were measured and used as reference measurements. Statistical analysis using cross-correlation, linear regression, analysis of variance (ANOVA), and principal components analysis (PCA) were performed to probe the relationships between various quality attributes. T1 showed high correlations with total soluble solids (R = 0.84), sugar:acid ratio (R = 0.84) and color parameters (R from 0.49 to 0.88). T2, on the other hand, was most highly correlated to pH (R = 0.76) but also had a statistically significant but negative correlation with Ri (-0.58 at p <0.05). PCA results separated the first day from the remaining days of the ripening process and the overall variation was mostly explained by color attributes (a* and h), T1, TSS, and TSS/TA. During seven days of ripening in storage, the trend of change in the peel color of banana was best described by L*, a*, h and total color difference (TCD). The index of ripening, Ri, defined based on the apparent change in peel color was highly correlated to TSS, TSS/TA, L*, a*, h, TCD, and T1. The strong similarity between the evolution of T1 and the most commonly approved characteristics of banana ripening suggest that T1 has great potential for characterizing the ripening process of banana. However, an investigation of the full metabolic profile of banana during ripening would provide an understanding of the link between NMR relaxation and ripening characteristics. A distribution of T1 relaxation time of intact banana fruit at the micro-Tesla field was successfully generated using Laplace inversion. A suitable framework of T1-domain based studies on banana ripening also applicable to other fruit was discussed; it would provide a comprehensive understanding of structural changes and water mobility that occur in ripening banana. The SQUID-detected ultra-low field NMR used here shows promise as a tool for probing the quality of intact banana fruit. Keywords: Banana quality, Laplace inversion, Relaxometry, SQUID-NMR.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call