Abstract

Researchers collecting intensive longitudinal data (ILD) are increasingly looking to model psychological processes, such as emotional dynamics, that organize and adapt across time in complex and meaningful ways. This is also the case for researchers looking to characterize the impact of an intervention on individual behavior. To be useful, statistical models must be capable of characterizing these processes as complex, time-dependent phenomenon, otherwise only a fraction of the system dynamics will be recovered. In this paper we introduce a Square-Root Second-Order Extended Kalman Filtering approach for estimating smoothly time-varying parameters. This approach is capable of handling dynamic factor models where the relations between variables underlying the processes of interest change in a manner that may be difficult to specify in advance. We examine the performance of our approach in a Monte Carlo simulation and show the proposed algorithm accurately recovers the unobserved states in the case of a bivariate dynamic factor model with time-varying dynamics and treatment effects. Furthermore, we illustrate the utility of our approach in characterizing the time-varying effect of a meditation intervention on day-to-day emotional experiences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.