Abstract

The Pt0 complex [Pt(PPh3 )(Eind2 -BPEP)] with a pyridine-based PNP-pincer-type phosphaalkene ligand (Eind2 -BPEP) has a highly planar geometry around Pt with ∑(Pt)=358.6°. This coordination geometry is very uncommon for formal d10 complexes, and the Pd and Ni homologues with the same ligands adopt distorted tetrahedral geometries. DFT calculations reveal that both the Pt and Pd complexes are M0 species with nearly ten valence electrons on the metals whereas their atomic orbital occupancies are evidently different from one another. The Pt complex has a higher occupancy of the atomic 6s orbital because of strong s-d hybridization due to relativistic effects, thereby adopting a highly planar geometry reflecting the shape and orientation of the partially unoccupied dx2-y2 orbital.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.