Abstract

Searching within the sample space for optimal solutions is an important part in solving optimization problems. The motivation of this work is that today’s problem environments have increasingly become dynamic with non-stationary optima and in order to improve optima search, memetic algorithm has become a preferred search method because it combines global and local search methods to obtain good solutions. The challenge is that existing search methods perform the search during the iterations without being guided by solid information about the nature of the search environment which affects the quality of a search outcome. In this paper, a spy search mechanism is proposed for memetic algorithm in dynamic environments. The method uses a spy individual to scope out the search environment and collect information for guiding the search. The method combines hyper-mutation, random immigrants, hill climbing local search, crowding and fitness, and steepest mutation with greedy crossover hill climbing to enhance the efficiency of the search. The proposed method is tested on dynamic problems and comparisons with other methods indicate a better performance by the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.