Abstract
We present a new learning algorithm for the blind separation of independent source signals having non-zero skewness (the 3rd-order cumulant) (the source signals have non-symmetric probability distribution.), from their linear mixtures. It is shown that for a class of source signals whose probability distribution functions is not symmetric, a simple adaptive learning algorithm using quadratic function (f(x)=x^2) is very efficient for blind source separation task. It is proved that all stable equilibria of the proposed learning algorithm are desirable solutions. Extensive computer simulation experiments confirmed the validity of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.