Abstract

This paper is concerned with the use of oscillating particles instead of the usual frozen particles to model a suspended particle in the dissipative particle dynamics (DPD) method. A suspended particle is represented by a set of basic DPD particles connected to reference sites by linear springs of very large stiffness. The reference sites, collectively modeling a rigid body, move as a rigid body motion calculated through their Newton-Euler equations, using data from the previous time step, while the velocities of their associated DPD particles are found by solving the DPD equations at the current time step. In this way, a specified Boltzmann temperature (specific kinetic energy of the particles) can be maintained throughout the computational domain, including the region occupied by the suspended particles. This parameter can also be used to adjust the size of the suspended and solvent particles, which in turn affect the strength of the shear-thinning behavior and the effective maximal packing fraction. Furthermore, the suspension, comprised of suspended particles in a set of solvent particles all interacting under a quadratic soft repulsive potential, can be simulated using a relatively large time step. Several numerical examples are presented to demonstrate attractiveness of the proposed model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call