Abstract
At present, the research and application of biped robots is more and more popular. The popularity of biped robots can be better promoted by improving the motion performance of low-cost biped robots. In this paper, the method of the Linear Quadratic Regulator (LQR) is used to track a robot's center of mass (COM). At the same time, the whole-body-control method and value function generated in the process of tracking COM are used to construct the quadratic programming (QP) model of a biped robot. Through the above method, the torque feedforward of the robot is obtained in the Drake simulation platform. The torque feedforward information of the robot is transformed into position feedforward information by spring compensation. In this paper, open loop control and spring compensation are used, respectively, to make the robot perform simple actions. Generally, after the compensation method of spring compensation is adopted, the roll angle and pitch angle of the upper body of the robot are closer to 0 after the robot performs an action. However, as the selected motion can introduce more forward and lateral motions, the robot needs more spring clearance compensation to improve performance. For improving the motion performance of a low-cost biped robot, the experimental results show that the spring compensation method is both reasonable and effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.