Abstract

Mechanisms underlying the surface properties of lung surfactant are extensively studied in in vitro systems such as the captive-bubble surfactometer (CBS), the pulsating-bubble surfactometer, and the Wilhelmy balance. Among these systems, the CBS is advantageous when a leakproof system and high cycling rates are required. However, widespread application of the CBS to mechanistic studies of dynamic surfactant protein-phospholipid interactions of spread film and to comparative studies between spread and adsorbed film is hampered because spreading of film is difficult. In addition, when film is formed by adsorption, the amount of material required is fairly large. We have developed an easy spreading technique that allows routine formation of film by spreading of small amounts of surfactant components at the air-water interface of an air bubble in a CBS. The technique is reliable, precise, and accurate, and the biophysical activity of film formed by spreading is similar to that of film formed by adsorption. This method will be useful for mechanistic studies of surfactant components under dynamic conditions and for comparative studies of spread films and adsorbed films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call