Abstract

Spontaneous recurrent seizures (SRS) are the major clinical characteristic of epilepsy. In this study, using a SRS-behavior test combined with linker capture subtraction (LCS) to identify genes altered in their expression in response to a single kainic acid (KA)-induced SRS at 3 weeks in the rat hippocampal formation. Dot blot analysis of the differentially expressed cDNA fragments with LCS showed the down-regulation of one cDNA related to SRS, which was designated epilepsy-related gene 1 ( ERG1). Northern blot analysis showed that ERG1 mRNA was reduced by KA administration with and without SRS, but more so with SRS. This differential expression had also been confirmed by in situ hybridization, which showed that ERG1 mRNA was down-regulated in the dorsal dentate granule cells (dDGCs) of the hippocampal formation, but remarkable up-regulated in the amygdalohippocampal area (AHi), posteromedial cortical amygdaloid nucleus (PMCo) and perirhinal cortex (PRh). The complete cDNA of ERG1 was cloned, sequenced (AF142097). It encodes a Rattus homologue of N-ethylmaleimide-sensitive fusion protein (NSF), which is an ATPase that plays a key role in mediating docking and/or fusion of transport vesicles in the multi-step pathways of vesicular transport. Sequence analysis revealed that ERG1 has high sequence similarity with the cDNA of the Mus musculus suppressor of K + transport growth defect (SKD2), N-ethylmaleimide(NEM)-sensitive fusion protein of Chinese hamster and human NEM-sensitive factor (HSU03985).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.