Abstract

A recessive mouse mutation, mesenchymal dysplasia (mes), which arose spontaneously on Chromosome 13, causes excess skin, increased body weight, and mild preaxial polydactyly. Fine gene mapping in this study indicated that mes is tightly linked to patched (ptc) that encodes a transmembrane receptor protein for Shh. Molecular characterization of the ptc gene of the mes mutant and an allelism test using a ptc knockout allele (ptc−) demonstrated that mes is caused by a deletion of the most C-terminal cytoplasmic domain of the ptc gene. Since mes homozygous embryos exhibit normal spinal cord development as compared with ptc− homozygotes, which die around 10 dpc with severe neural tube defects, the C-terminal cytoplasmic domain lost in mes mutation is dispensable for inhibition of Shh signaling in early embryogenesis. However, compound heterozygotes of ptc− and mes alleles, which survive up to birth and die neonatally, had increased body weight and exhibited abnormal anteroposterior axis formation of the limb buds. These findings indicate that Ptc is a negative regulator of body weight and ectopic activation of Shh signaling in the anterior mesenchyme of the limb buds, and that the C-terminal cytoplasmic domain of Ptc is involved in its repressive action.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.