Abstract

Metastasis causes most cancer related mortality but the mechanisms governing metastatic dissemination are poorly defined. Metastasis involves egression of cancer cells from the primary tumors, their survival in circulation and colonization at the secondary sites. Cancer cell egression from the primary tumor is the least defined process of metastasis as experimental metastasis models directly seed cancer cells in circulation, thus bypassing this crucial step. Here, we developed a spontaneous metastasis model that retains the egression step of metastasis. By repeated in vivo passaging of the poorly metastatic Lewis lung carcinoma (3LL) cells, we generated a cell line (p-3LL) that readily metastasizes to lungs and liver from subcutaneous (s.c.) tumors. Interestingly, when injected intravenously, 3LL and p-3LL cells showed a similar frequency of metastasis. This suggests enhanced egression of p-3LL cells may underlie the enhanced metastatic spread from primary tumors. Microarray analysis of 3LL and p-3LL cells as well as the primary tumors derived from these cells revealed altered expression of several genes including significant upregulation of a tight junction protein, claudin-9. Increased expression of claudin-9 was confirmed in both p-3LL cells and tumors derived from these cells. Knockdown of claudin-9 expression in p-3LL cells by si-RNA significantly reduced their motility, invasiveness in vitro and metastasis in vivo. Conversely, transient overexpression of claudin-9 in 3LL cells enhanced their motility. These results suggest an essential role for claudin-9 in promoting lung cancer metastasis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.