Abstract
Mouse models that reflect human disorders provide invaluable tools for the translation of basic science discoveries to clinical therapies. However, many of these invivo therapeutic studies are short term and do not accurately mimic patient conditions. In this study, we used a fully immunocompetent, transgenic mouse model, TGS, in which the spontaneous development of metastatic melanoma is driven by the ectopic expression of a normal neuronal receptor, mGluR1, as a model to assess longitudinal treatment response (up to 8 months) with an inhibitor of glutamatergic signaling, troriluzole, which is a prodrug of riluzole, plus an antibody against PD-1, an immune checkpoint inhibitor. Our results reveal a sex-biased treatment response that led to improved survival in troriluzole and/or anti-PD-1-treated male mice that correlated with differential CD8+ T cells and CD11b+ myeloid cell populations in the tumor-stromal interface, supporting the notion that this model is a responsive and tractable system for evaluating therapeutic regimens for melanoma in an immunocompetent setting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.