Abstract
We consider compact symplectic manifolds acted on effectively by a compact connected Lie group K in a Hamiltonian fashion. We prove that the squared moment map ∥μ∥2 is constant if and only if K is semisimple and the manifold is K-equivariantly symplectomorphic to a product of a flag manifold and a compact symplectic manifold which is acted on trivially by K. In the almost-Kahler setting the symplectomorphism turns out to be an isometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.