Abstract

Graph-based semi-supervised learning (G-SSL) methods play an increasingly important role in machine learning systems. Recently, latent low-rank representation (LatLRR) graph has gained great success in subspace clustering. However, LatLRR only considers the global structure, while the local geometric information, which is often important to many real applications, is ignored. In this paper, we propose a locality regularized LatLRR model (LR-LatLRR) for semi-supervised subspace clustering problems. This model incorporates two regularization terms into LatLRR by taking the local structure of data into account. Then, we develop an efficient splitting algorithm for solving LR-LatLRR. In addition, we also prove the global convergence of the proposed algorithm. Furthermore, we extend the LR-LatLRR model to a case of including the non-negative constraint. Finally, we conduct experiments on a synthetic data and several real data sets for the semi-supervised clustering problems. Experimental results show that our method can obtain high classification accuracy and outperforms several state-of-the-art G-SSL methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.