Abstract

A set of perturbed compressible equations(PCE), based on a hydrodynamic/acoustic splitting method, is proposed for aeroacoustic noise prediction of low Mach number viscous flows. The present formulation corrects the deficiency of previous splitting methods that have no control over the coupling effects between the incompressible vorticity and the perturbed velocities. The validation test shows that the present PCE solution is in excellent agreement with those of direct acoustic numerical simulation(DaNS) and Curle's acoustic analogy for a laminar dipole tone from a 2D circular cylinder at Reynolds number based on the cylinder diameter, ReD=200 and free stream Mach number, M∞ = 0.3. Computational efficiency and accuracy requirements for PCE are also investigated for a vortex scattering noise from the trailing-edge of a thin plate at Reynolds number based on the plate thickness, Reh= 2000 and M∞ = 0.3. The test results indicate that the computational efficiency can be achieved with an acoustic grid at lower resolution, as long as the projection quality of the total derivative of the incompressible pressure, DP/Dt field is retained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.