Abstract

We develop a splitting Chebyshev collocation (SCC) method for the time-dependent Schrodinger–Poisson (SP) system arising from theoretical analysis of quantum plasmas. By means of splitting technique in time, the time-dependant SP system is first reduced to uncoupled Schrodinger and Poisson equations at every time step. The space variables in Schrodinger and Poisson equations are next represented by high-order Chebyshev polynomials, and the resulting system are discretized by the spectral collocation method. Finally, matrix diagonalization technique is applied to solve the fully discretized system in one dimension, two dimensions and three dimensions, respectively. The newly proposed method not only achieves spectral accuracy in space but also reduces the computer-memory requirements and the computational time in comparison with conventional solver. Numerical results confirm the spectral accuracy and efficiency of this method, and indicate that the SCC method could be an efficient alternative method for simulating the dynamics of quantum plasmas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.