Abstract

Summary An accurate forecast of river stage is very significant so that there is ample time for the pertinent authority to issue a forewarning of the impending flood and to implement early evacuation measures as required. Since a variety of existing process-based hydrological models involve exogenous input and different assumptions, artificial neural networks have the potential to be a cost-effective solution. In this paper, a split-step particle swarm optimization (PSO) model is developed and applied to train multi-layer perceptrons for forecasting real-time water levels at Fo Tan in Shing Mun River of Hong Kong with different lead times on the basis of the upstream gauging station (Tin Sum) or at Fo Tan. This paradigm is able to combine the advantages of global search capability of PSO algorithm in the first step and local fast convergence of Levenberg–Marquardt algorithm in the second step. The results demonstrate that it is able to attain a higher accuracy in a much shorter time when compared with the benchmarking backward propagation algorithm as well as the standard PSO algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.