Abstract
A split pH fuel cell was constructed using an alkaline fuel stream containing NaOH and an alcohol fuel (glycerol, 1-propanol, or 2-propanol) with an acidic oxidant stream containing H2SO4 and 3% H2O2; the electrodes were Pd black anode and Pt black or carbon black cathode separated by a cation exchange membrane with Na+ substituted for H+. The split pH environment improves the thermodynamics of the fuel cell by creating a large potential difference between electrodes, and it provides improved kinetics by lowering the pH of the anode to optimum conditions for alcohol oxidation. When the fuel cell was constructed with a carbon black cathode, significant performance was observed, with maximum power density as high as 115 mW cm−2 for 1-propanol, 105 for glycerol, and 101 for 2-propanol. When the cathode was constructed with Pt black, the power densities increased as high as 275 mW cm−2 for glycerol, 241 for 1-propanol, and 228 for 2-propanol. This performance with Pt is the highest to our knowledge for these fuels in the open literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.