Abstract

An emerging strategy for the therapeutic targeting of protein phosphatases involves the use of compounds that interfere with the binding of regulatory subunits or substrates. However, high-throughput screening strategies for such interfering molecules are scarce. Here, we report on the conversion of the NanoBiT split-luciferase system into a robust assay for the quantification of phosphatase subunit and substrate interactions in cell lysates. The assay is suitable to screen small-molecule libraries for interfering compounds. We designed and validated split-luciferase sensors for a broad range of PP1 and PP2A holoenzymes, including sensors that selectively report on weak interaction sites. To facilitate efficient hit triaging in large-scale screening campaigns, deselection procedures were developed to eliminate assay-interfering molecules with high fidelity. As a proof-of-principle, we successfully applied the split-luciferase screening tool to identify small-molecule disruptors of the interaction between the C-terminus of PP1β and the ankyrin-repeat domain of the myosin-phosphatase targeting subunit MYPT1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call