Abstract

Background Activation of the homodimeric transmembrane guanylyl cyclase-A (GC-A) receptor upon binding of its extracellular ligands, atrial (ANP) and B-type (BNP) natriuretic peptides, leads to cyclic GMP formation in many types of cells. This NP/GC-A pathway has a critical role in the endocrine regulation of arterial blood pressure and volume and in the local counter-regulation of cardiac hypertrophy and fibrosis. Alterations of this system result in arterial hypertension, hypervolemia and cardiac hypertrophy. Many studies have shown that exposure of GC-A to high concentrations of ANP/BNP or to growth hormones such as angiotensin II (Ang II) or endothelin provokes homologous versus heterologous desensitization of the receptor [1]. However, the mechanisms accounting for this loss of function of GC-A in vivo are largely unknown. In the present study we identified and characterized a novel isoform of GC-A (GC-AΔLys-Gln 330) with unique structural properties. Our data reveal that this splice variant functions as dominant negative isoform and suggest that increased alternative splicing of GC-A may contribute to homologous or heterologous desensitization of the NP/GC-A system.

Highlights

  • Activation of the homodimeric transmembrane guanylyl cyclase-A (GC-A) receptor upon binding of its extracellular ligands, atrial (ANP) and B-type (BNP) natriuretic peptides, leads to cyclic GMP formation in many types of cells

  • In the present study we identified and characterized a novel isoform of GC-A (GC-AΔLys314-Gln 330) with unique structural properties

  • Our data reveal that this splice variant functions as dominant negative isoform and suggest that increased alternative splicing of GC-A may contribute to homologous or heterologous desensitization of the NP/GC-A system

Read more

Summary

Background

Activation of the homodimeric transmembrane guanylyl cyclase-A (GC-A) receptor upon binding of its extracellular ligands, atrial (ANP) and B-type (BNP) natriuretic peptides, leads to cyclic GMP formation in many types of cells. This NP/GC-A pathway has a critical role in the endocrine regulation of arterial blood pressure and volume and in the local counter-regulation of cardiac hypertrophy and fibrosis. Our data reveal that this splice variant functions as dominant negative isoform and suggest that increased alternative splicing of GC-A may contribute to homologous or heterologous desensitization of the NP/GC-A system

Methods and results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.