Abstract

An ideal membrane for oil/water separation at industrial scale is expected to possess the combined merits of excellent separation performance, sound mechanical flexibility, and high durability under harsh environments. In response to these challenging requirements, we came up with a new concept to design the membrane constructed with ultralong hydrogel-functionalized MnO2 nanowires. The super-oleophobic nanowires form highly open and tight pore structures within the membrane, which endows its high permeation flux (2800 L h−1 m−2 bar−1), high oil/water separation efficiency (>99 %) and low fouling tendency for separating emulsified oil from water. Furthermore, the brittleness problem of MnO2 materials is collectively resolved due to the high aspect ratio and surface functionalization of the hydrogel-functionalized MnO2 nanowires. This results in the new membrane with extraordinary mechanical flexibility and potential for spiral-wound membrane modules, which are highly desired in industrial applications due to a lower footprint and lower capital cost. The new membrane also demonstrates high durability under harsh environments with non-neutral pH values or high salinities. Given its facile synthesis process and inexpensive materials, this spiral-windable and durable membrane with high separation performance has the great potential to be applied at industrial scale for oily wastewater treatment under harsh environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.