Abstract

High-precision image segmentation of the spine in computed tomography (CT) images is important for the diagnosis of spinal diseases and surgical path planning. Manual segmentation is often tedious and time consuming. Thus, an automatic segmentation algorithm is expected to solve this problem. However, because different areas are scanned, the number of spines in the original CT image and the coverage area are often different, making it extremely difficult to directly conduct a fully autonomous spine segmentation. In this study, we propose a two-stage automatic spine segmentation method based on 3D Swin Transformer. In the first stage, the 3D Swin-YoloX algorithm is used to achieve an accurate positioning of each spine segment in the CT images. In the second stage, 3D Swin-UNet is used to achieve a high-precision segmentation of the spine. Using an open dataset, the average Dice of our approach can reach 0.942 and the average Hausdorff distance can reach 6.24, indicating a higher accuracy in comparison with other published methods. Our proposed method can effectively eliminate any adverse effects of the different scanning areas on a spinal image segmentation and has a high application value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.