Abstract

Motivated by a recent angle-resolved thermal conductivity experiment that shows a twofold gap symmetry in the high-field and low-temperature C phase in the heavy-fermion superconductor UPt$_3$, we group-theoretically identify the pairing functions as $E_{1u}$ with the $f$-wave character for all the three phases. The pairing functions are consistent with the observation as well as with a variety of existing measurements. By using a microscopic quasi-classical Eilenberger equation with the identified triplet pairing function under applied fields, we performed detailed studies of the vortex structures for three phases, including the vortex lattice symmetry, the local density of states, and the internal field distribution. These quantities are directly measurable experimentally by SANS, STM/STS, and NMR, respectively. It is found that, in the B phase of low $H$ and low $T$, the double-core vortex is stabilized over a singular vortex. In the C phase, thermal conductivity data are analyzed to confirm the gap structure proposed. We also give detailed comparisons of various proposed pair functions, concluding that the present scenario of $E_{1u}$ with the $f$-wave, which is an analogue to the triplet planar state, is better than the $E_{2u}$ or $E_{1g}$ scenario. Finally, we discuss the surface topological aspects of Majorana modes associated with the $E_{1u}^f$ state of planar like features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.