Abstract
The spin-Seebeck effect (SSE), the central topic of spin caloritronics, provides a new direction for future low power consumption technology. To realize device applications of SSE, a spin-Seebeck diode (SSD) with a negative differential SSE is very desirable. To this end, we constructed a spin caloritronics device that was composed of a ferromagnetic double-single-hydrogen-terminated zigzag silicene nanoribbon (ZSiNR-H2-H) and an antiferromagnetic double-double-hydrogen-terminated zigzag silicene nanoribbon (ZSiNR-H2-H2). By using ab initio calculations combined with nonequilibrium Green's function technique, we found that thermally driven spin current through the heterojunction featured the SSD effect and negative differential SSE. The former originates from the asymmetrical thermal-driven conducting electrons and holes, and the latter ascribes to the thermal spin compensation effect. Their physical mechanisms are much different from the previous ones mainly relying on the spin-wave excitations in the interface between metals and magnetic insulators, supporting our study that puts forward a new route to realize the SSD with a negative differential SSE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.