Abstract

The binding of the mitochondrial creatine kinase to aqueous dispersions of beef heart cardiolipin has been studied via the perturbation of the mobility of spin-labelled cardiolipin, using electron spin resonance (ESR) spectroscopy. In the presence of creatine kinase (1:1 protein/lipid ratio, by mass), the ESR spectra of cardiolipin labelled in a single acyl chain [n-(4,4-dimethyl-oxazolidinyl-N- oxy)stearoylcardiolipin] indicate a restriction of motion both at the C-5 and C-14 positions (n = 5, 14) of the lipid chains. The restriction in mobility was reversed by addition of phosphate or adriamycin, which are thought to inhibit the binding of creatine kinase to the mitochondrial membrane or to displace it from its binding site on the membrane. The effect of the protein on the chain mobility is consistent with surface binding of the protein; no positive evidence was obtained for penetration of the protein into the hydrophobic region of the membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.