Abstract

The advancement of molecular electronics and spintronics requires novel hybrid materials with synergistic magnetic and electrical properties. The non-covalent functionalization of highly conductive graphene with magnetically bistable spin crossover (SCO) complexes may yield such a multifunctional material. In this regard, a graphene-Fe(ii) SCO complex hybrid (Gr-SCO) has been prepared by non-covalently anchoring a pyrene decorated SCO complex with solution phase pre-exfoliated few-layer graphene sheets. SQUID magnetometry revealed the preservation of SCO in the Gr-SCO hybrid material exhibiting more gradual spin state switching characteristics than in the bulk molecular complex. This persistence of SCO of a molecular Fe(ii) complex upon anchoring on the graphene surface has consequences towards the realization of SCO based applications: in (i) reversible spin state dependent band gap tuning of graphene with an SCO complex analogous to chemical doping of graphene, and (ii) to probe the spin state dependence of electrical conductivity modulation by wiring the anchoring group (pyrene) tethered SCO complex between chemically robust few-layer graphene electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.