Abstract
Burn is a common traumatic disease. After severe burn injury, the human body will increase catabolism, and burn wounds lead to a large amount of body fluid loss, with a high mortality rate. Therefore, in the early treatment for burn patients, it is essential to calculate the patient's water requirement based on the percentage of the burn wound area in the total body surface area (TBSA%). However, burn wounds are so complex that there is observer variability by the clinicians, making it challenging to locate the burn wounds accurately. Therefore, an objective, accurate location method of burn wounds is very necessary and meaningful. Convolutional neural networks (CNNs) provide feasible means for this requirement. However, although the CNNs continue to improve the accuracy in the semantic segmentation task, they are often limited by the computing resources of edge hardware. For this purpose, a lightweight burn wounds segmentation model is required. In our work, we constructed a burn image dataset and proposed a U-type spiking neural networks (SNNs) based on retinal ganglion cells (RGC) for segmenting burn and non-burn areas. Moreover, a module with cross-layer skip concatenation structure was introduced. Experimental results showed that the pixel accuracy of the proposed reached 92.89%, and our network parameter only needed 16.6 Mbytes. The results showed our model achieved remarkable accuracy while achieving edge hardware affinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.