Abstract
Active exploration of visual space is controlled by a saccadic system using a combination of bottom-up and top-down signals. Rate based models [1] and simple V1 models (e.g. [2]), have been proposed to explain bottom-up or attentional mechanisms. We present a biologically detailed spiking model of superior colliculus to generate saccadic eye movements using a competitive mechanism based on spike arrival times. Various pop-out tasks based on color, orientation features and motion is used to analyze the reaction time of the model. The superior colliculus is modeled as a two layer network with feature-specific superficial layers driving a common deep layer. The superficial layers of the superior colliculus are topologically organized and is driven by retinal parasols cells, V1 layer 2/3 orientation-selective cells, V1 layer 2/3 color-selective cells, and MT cells. These enable luminance, orientation, color and motion based popout respectively. In this model, the earliest spikes are considered the most salient. A saccade is triggered when there is a consistent winner in the superficial layers at the same spatial region over an extended period of time, 40 ms to 100 ms. The superficial layers implement a temporal winner-take-all mechanism; specifically, there exists a separate inhibitory subnetwork that allows each superficial layer to choose a winner. The deep layer integrates these winners over time and selects a single spatial region. It implements a bump attractor network mediated by short-range excitation (AMPA and NMDA) and long range inhibition, which generates a bump of activity before and during a saccade. An interesting property of bump attractor network based circuit is that a single cell response is independent of size of the stimulus. Similar spiking response was also observed in most of the visually selective superior colliculus cells in monkeys [3]. Additionally, this model captures known behavioral and neurophysiological properties of the superior colliculus such as saccadic suppression, activity buildup before saccade generation, and GABAb mediated inhibition from the deep layer to superficial layers resulting in selective inhibition in recently attended region. All the connections in the SC model are pre-wired to satisfy the response characteristics of superficial and deep layers. The reaction time of the model was tested on simple and conjunctive pop-out tasks. We observe only a mild shift in reaction time based on the number of distractors. Higher reaction time was observed as the complexity of the search task was increased. Also, reaction time increases based on the level of visual hierarchy that is connected to the superior colliculus layers.
Highlights
Active exploration of visual space is controlled by a saccadic system using a combination of bottom-up and topdown signals
The superior colliculus is modeled as a two layer network with feature-specific superficial layers driving a common deep layer
This model captures known behavioral and neurophysiological properties of the superior colliculus such as saccadic suppression, activity buildup before saccade generation, and GABAb mediated inhibition from the deep layer to superficial layers resulting in selective inhibition in recently attended region
Summary
Active exploration of visual space is controlled by a saccadic system using a combination of bottom-up and topdown signals. The superior colliculus is modeled as a two layer network with feature-specific superficial layers driving a common deep layer. The superficial layers of the superior colliculus are topologically organized and is driven by retinal parasols cells, V1 layer 2/3 orientation-selective cells, V1 layer 2/3 color-selective cells, and MT cells. These enable luminance, orientation, color and motion based popout respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.