Abstract
Experimental results of a SPICE-compatible macromodel to model the nonlinear behavior of second generation current conveyors (CCIIs) at low frequency are presented. The derived macromodel includes not only those real physical performance parameters more important for CCII like the dynamic range, slew rate, DC gain and gain–bandwidth product, but parasitic resistors and capacitors associated to the input and output terminals are also included. To validate the derived macromodel, a saturated nonlinear function series (SNFS) was built by using AD844AN commercially available active device configured as CCII and embedded in a chaotic system. After that, an experimentally generated chaotic signal was applied as excitation signal to SNFS built with AD844AN foundry-provided macromodel and the proposed herein. Our results indicate that the derived macromodel can be used in the time-domain for forecasting the behavior of nonlinear circuits without worsening the accuracy and at less time compared with the foundry-provided macromodel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.