Abstract
Extraction of carrier mobilities of silicon nanowire FETs (SNWFETs) with Schottky source and drain contacts is performed using a newly developed compact model, which is suitable for efficient circuit simulation. The SNWFET model is based on an equivalent circuit including a Schottky diode model for two metal-semiconductor contacts and a SPICE LEVEL 3 MOSFET model for an intrinsic NW. The Schottky diode model is based on our recently developed Schottky diode model that includes thermionic field emission for reverse bias and thermionic emission mechanism for forward bias. It also includes a new analytical Schottky barrier height model dependent on the gate voltages as well as the drain-source voltages. The results simulated from the SNWFET model reproduce various, previously reported experimental results within 10% errors. The mobilities extracted from our model are compared with the mobility calculated without considering the Schottky contacts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.