Abstract

Experiments in which hen erythrocytes were exposed to the action of exogenous sphingomyelinase ( Staphylococcus aureus) or to their endogenous plasma membrane sphingomyelinase showed that about 15% of the total sphingomyelin was resistant to breakdown either in intact or lysed cells. This resistant pool of sphingomyelin seems likely to reside in the nuclear membranes of the cells, so that essentially all the plasma membrane sphingomyelin can be broken down by exogenous sphingomyelinase acting on intact cells, suggesting that plasma membrane sphingomyelin is exclusively localised in the outer lipid leaflet. Paradoxically, introduction of Ca 2+ into the intact cells using A23187 causes the breakdown of up to 30% of total cell sphingomyelin inside the cells but without apparently affecting the putative nuclear pool of sphingomyelin and this suggests that Ca 2+ may alter the original disposition of sphingomyelin in the membrane so that originally outer leaflet sphingomyelin becomes accessible to the endogenous sphingomyelinase inside the cells. No differences were seen in the fatty acid compositions of sphingomyelin degradable by exogenous sphingomyelinase, sphingomyelin degradable in the presence of A23187/Ca 2+ or the enzyme-resistant pool of sphingomyelin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call