Abstract
As rotary machines have become more complicated, balancing processes have been classified as a vital step in condition monitoring to ensure that machines operate reliably, smoothly and safely. All rotating objects will deflect during rotation and all objects possess certain natural frequencies in the absence of rotation. However, an unbalanced object can cause significant unwanted deflection created by resonant vibration at a frequency (cycles/second) close to certain rotational speeds (rotations/second), known as critical speeds. This is especially important for flexible machines which normally work at rotations above their critical speeds. Imbalance is a common problem in flexible rotating machinery that can lead to extreme vibration and noise levels. This is one of the major reasons for studying various balancing methods applied to the vibration response of rotating machines. Recently, the relation between acoustic and vibration response during a rotary machine balancing process based on the original Four-Run method has been presented for constant speed machines. This method cannot be applied to machines in start-up or shut-off. Hence, by considering the acoustic and vibration responses of a machine between its critical speeds, this research presents a new innovative speed-variant balancing method based on the original Four-Run method, named as (PPCS) Peak to Peak for Critical Speeds. The proposed method consists of two major types of application: the first is in the run-up of the machine and the second is in shut down. Experimental laboratory results show that this method can be implemented for speed-variant and flexible rotary machines during run-up or shut-down transient processes based on acoustic and vibration measurements. Further, the results show the same trend in acoustic and vibration responses during balancing process which was shown for constant speed rotary machines. With a 40% improvement in response compared to around 55% obtained by traditional vibration measurements, the results found show an appreciable benefit in an alternative acoustic methodology that may have not been considered previously for run-up and shut-down issues. In addition, since only the magnitude of response is required and this is a non-contact technique an acoustic-only methodology, it can be employed with some confidence as an innovative and readily available method for condition monitoring.
Highlights
Presenting a phase-less balancing method for a flexible speed-variant rotary machine was the main concern in this research
Using acoustic as an alternative to the traditional vibration response method, this paper presents an innovative method which works in balancing machines between different critical speeds
The proposed Peak-to-Peak for Critical Speeds (PPCS) balancing method was performed on a sample rotating machine in run-up and shut-down states and, the data for vibration and acoustic responses in all steps were compared in detail in time and frequency domains
Summary
High dynamic stresses that are observed within a rotating machine are commonly assessed as unwanted quantities; these could affect machine elements like bearings, shafts, structural joints and foundations, and in addition can produce undesirable noise. One possible reason for these periodic forces to show up is due to unbalanced rotating components inside the rotating part of the machine. These unbalances could arise from manufacturing inaccuracies or operational corrosions. In many rotating machines such as electrical motors, car engines, power turbines, pumps, etc., it is essential that these need to be balanced to Sustainability 2021, 13, 7237.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.